

2回路入り低雑音オペアンプ

概要

NJM5532 は2回路入り低雑音演算増幅器であります。2回路入り演算 増幅器 NJM1458 と比較すると、雑音特性に優れ、出力特性、周波数特性 も著しく改善されております。位相補償は内蔵されております。

これらの特性は、高性能オーディオ機器等に最適です。

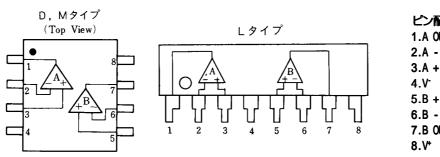
特性の中で低雑音が必要な場合は、雑音規格のある選別品の御使用 をお勧め致します。

外 形

NJM5532D

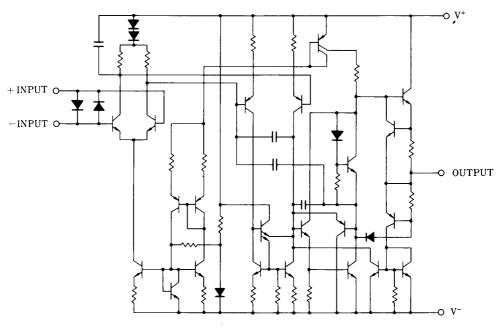
NJM5532M

特徴


動作電源電圧 $(\pm 3 \sim \pm 22 \text{V})$ 小信号带域幅 (10MHz typ.) 出力ドライブ能力 $(600\Omega, 10V_{rms} \text{ typ.})$ 入力換算雑音電圧 (5nV/ Hz typ.) 電力利得帯域幅 (140kHz typ.) スルーレート $(8V/\mu s typ.)$

バイポーラ構造

外形 DIP8, DMP8, SIP8


NJM5532L

端子配列

ピン配置 1.A OUTPUT 2.A - INPUT 3.A +INPUT 5.B +INPUT 6.B - INPUT 7.B OUTPUT

等価回路図 (下図の回路が2回路入っています)

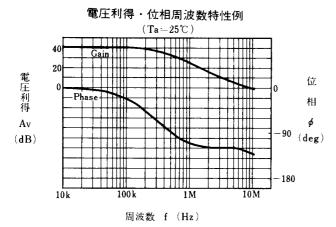
絶対最大定格 (Ta=25°C)

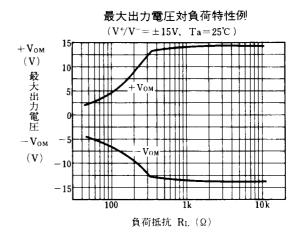
	項	目		記号	定格	単 位
電	源	電	圧	V+/V-	± 22	V
同	相入	力 電	圧	V _{IC}	V*/V-	V
差	動入	力 電	圧	V _{ID}	± 0.5	V
消	費	電	力	$P_{\mathtt{D}}$	(D タイプ) 500 (M タイプ) 600(注) (L タイプ) 800	mW
動	作	温	度	T _{opr}	-20 ~ +75	°C
保	存	温	度	T_{stg}	-40 ~ +125	°C

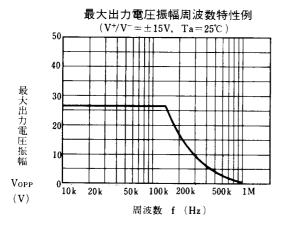
(注)セラミック基板 (10×20×0.635mm) 実装時

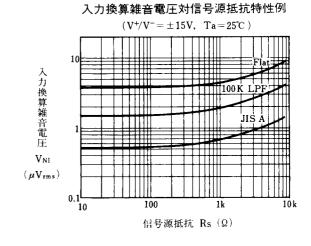
電気的特性 (V⁺/V⁻=± 15V, Ta=25°C)

直流特性

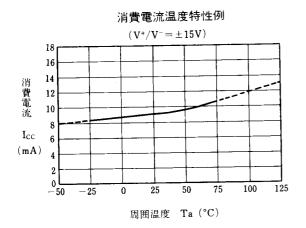

項目	記号	条件	最 小	標準	最大	単 位
入力オフセット電圧	V _{IO}	R_s 10k Ω	-	0.5	4	mV
入力オフセット電流	I 10		-	10	150	nA
入力バイアス電流	I _B		-	200	800	nA
消費電流	I _{cc}	R _L =∞	-	9	16	mA
同相入力電圧範囲	V _{ICM}		± 12	± 13	-	V
同相信号除去比	CMR	R_s 10k Ω	70	100	-	dB
電源電圧除去比	SVR	R_s 10k Ω	80	100	-	dB
電 圧 利 得 1	A _{v1}	R_L 2k Ω , V_0 =±10V	88	100	-	dB
電 圧 利 得 2	A_{V2}	$R_{L} = 600\Omega, V_{0} = \pm 10V$	83.5	94	-	dB
最大出力電圧1	V _{om1}	R _L 600Ω	± 12	± 13	-	V
最大出力電圧2	V _{OM2}	$R_{L} = 600\Omega, V^{+}/V^{-}=\pm 18V$	± 15	± 16	-	V
入 力 抵 抗	R _{IN}		30	300	-	kΩ
_ 出 力 短 絡 電 流	Ios		-	38	-	mA

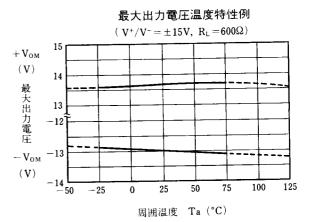

交流特性

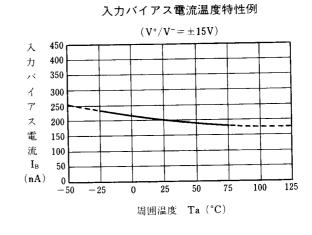

項目	記号	条件	最 小	標準	最大	単 位
出 力 抵 抗	R_0	$A_V = 30 dB$, $f = 10 kHz$, $R_L = 600 \Omega$	-	0.3	-	Ω
オーバー・シュート		$A_{V}=1, V_{IN}=100 \text{mV}_{P-P}, C_{L}=100 \text{pF}, R_{L}=600 \Omega$	-	10	-	%
電 圧 利 得	A_{V}	f=10kHz	-	67	-	dB
スルーレート	SR		-	8	-	V/µs
利 得 帯 域 幅 積	GB	$C_L = 100 pF, R_L = 600 \Omega$	-	10	-	MHz
電力利得帯域幅	W_{PG}	V ₀ =±10V	-	140	-	kHz
"	W_{PG}	$V_0 = \pm 14 \text{V}, R_L = 600 \Omega, V^+ / V^- = \pm 18 \text{V}$	-	100	-	kHz
入力換算雑音電圧	e_n	f ₀ =30Hz	-	8	-	nV/ Hz
"	e_n	f ₀ =1kHz	-	5	-	nV/ Hz
入力換算雑音電流	i _n	f ₀ =30Hz	-	2.7	-	pA/ Hz
"	i _n	f ₀ =1kHz	-	0.7	-	pA/ Hz
チャンネルセパレーション	CS	$f=1kHz$, $R_s=5k\Omega$	-	110	-	dB

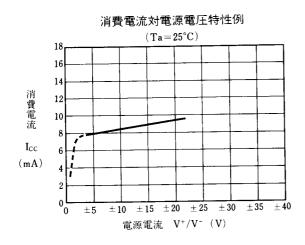

(注): 雑音規格については当社選別品 D ランクも用意しております。(R_0 =2.2k Ω ,RIAA, V_k =1.4 μ V 以下)

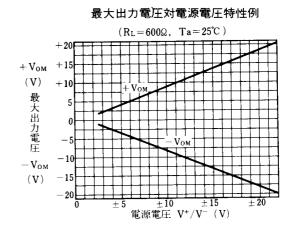
特 性 例

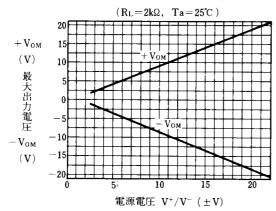






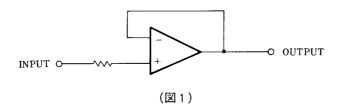



特性例



特性例

最大出力電圧対電源電圧特性例



全高調波歪率対出力電圧特性例 (V+/V-=±15V, R_L=10kΩ, Gain=20dB, Ta=25°C) 0.01 全高調波 平 0.001 1 2 3 5 10 出力電圧 Vo (Vrms)

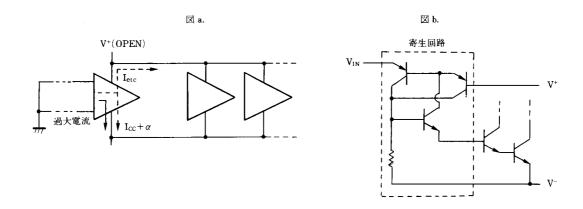
使用上の注意

・入力端子間ダイオードの保護

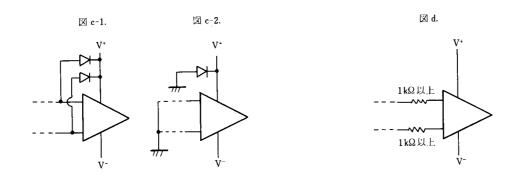
ボルテージフォロワで使用する場合、電源投入時に入力端子間のダイオードが破損する恐れがありますので、図1に示す様に入力端子に電流制限抵抗を入れて御使用下さい。

・熱設計に関する注意

パッケージ許容損失 (P_D) をオーバーし、ジャンクション温度 (T_j) が保証値 $(+125^{\circ}C)$ を超えますと、IC の劣化や破壊に至る場合があります。


本 IC は、デザイン上 I_{CC} レベルが大きく($I_{COMA}=16$ mA ® V+/V-=±15V, Ta=+25°C)、 I_{CC} は正の温度特性をもちますので、使用電源電圧、負荷電流による IC 内部損失、高温時の P_{CC} の低下を含め十分検討する必要があります。

NJM5532


・寄生回路による過大電流対策

本 IC は、V*をオープン (図 a) にしますと、IC 内部の寄生回路 (図 b) により、過大電流が流れ焼損に至る場合があります。

入力端子と V⁻ 間の電位差が大きい程、GND と入力端子間が低抵抗である程、V⁻ 端子が低インピーダンスで接続されている程(I_{etc}大) 過大電流が発生しやすくなります。

対策としましては、寄生回路が動作しない様入力と \forall 間にダイオードを挿入 (図 c-1,図 c-2) するか、寄生回路の動作を制限 (図 d) することを推奨します。

<注意事項>

このデータブックの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの活がな保証を行うものではありませ ん。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。